Über das 2-Phènyl-3,5-dioxoisoxazolidin und seine Kondensationsprodukte mit Aldehyden

Zur Kenntnis organischer Lewissäuren, 10. Mitt.*

Von

P. Margaretha und O. E. Polansky

Aus dem Institut für Theoretische Chemie der Universität Wien und dem Max-Planck-Institut für Kohlenforschung, Abt. Strahlenchemie, Mülheim-Ruhr

(Eingegangen am 10. Oktober 1968)

Die Darstellung und Eigenschaften verschieden substituierter Benzylidenderivate des 2-Phenyl-3,5-dioxoisoxazolidins werden beschrieben. Ihre p K_L -Werte werden mit denen der analogen Benzylidenderivate des 1,2-Dimethyl-3,5-dioxopyrazolidins verglichen; es zeigt sich, daß der Ersatz einer $\mathrm{CH_3}$ -N-Gruppe durch ein O-Atom den p K_L -Wert um etwa eine Einheit erniedrigt.

Ergänzend zu Literaturangaben² wird festgestellt, daß 2-Phenyl-3,5-dioxoisoxazolidin auch in Enolform vorliegt, wie durch NMR-Spektren sowie die Darstellung der beiden O-Methyläther bewiesen wird.

The preparation and the properties of various substituted benzylidene derivatives of 2-phenyl-3,5-dioxoisoxazolidine are described. Their $pK_L^{'}$ -values are compared to those of the similarly substituted benzylidene derivatives of 1,2-dimethyl-3,5-dioxopyrazolidine. On replacing a CH₃N-group by an O-atom the $pK_L^{'}$ -values decrease by about one unit.

In addition to literature it is shown by means of NMR-spectra and the preparation of the both enolic ethers that 2-phenyl-3,5dioxoisoxazolidine forms also stable enols.

^{* 9.} Mitt.: Mh. Chem. 99, 1246 (1968).

Da sich Kondensationsprodukte des Typs I als Lewissäuren erwiesen hatten¹, interessierte, in welcher Weise der Ersatz eines Ringstickstoffes durch ein Sauerstoffatom die pK'_{L} -Werte ändert. Die Ausgangssubstanz zu diesen Versuchen, 2-Phenyl-3,5-dioxoisoxazolidin (II), wurde kürzlich beschrieben².

Ergänzend zu den Literaturangaben konnten wir feststellen, daß II nicht nur in der Ketoform, sondern auch in der Enolform vorliegt: während das NMR-Spektrum in CDCl₃ 2 Signale bei 7,47 und 3,60 ppm im Verhältnis 5:2 aufweist, treten in CD₃COCD₃ 3 Signale bei 7,47, 3,88 und 2,88 ppm im Verhältnis 5:1:1 auf. Um die enolische OH-Gruppe chemisch nachzuweisen, haben wir II mit Diazomethan in CHCl₃ bei Zimmertemp. umgesetzt und erhielten erwartungsgemäß ein Gemisch der O-Methyläther IIIa und IIIb, deren Konstitution durch das NMR-Spektrum des Gemisches sichergestellt werden konnte. Wir haben daher auf die Trennung des Gemisches verzichtet. Nach Behandlung des Gemisches mit Aktivkohle deutet das NMR-Spektrum auf ein Produktverhältnis IIIa: IIIb von etwa 1:4 hin.

$$CO-O$$
 CH
 $C-O$
 CH
 $CO-N-C_6H_5$
 CH_3O
 CH
 $CO-N-C_6H_5$
 CH_3O
 CH
 $CO-N-C_6H_5$
 CH
 $CO-N-C_6H_5$

Die Ausbildung der Enolform ist durch die verbesserte Konjugation im Enol verständlich. Einfache HMO-Rechnungen³ geben einen Unterschied der π -Elektronenenergie von 0,673 β zugunsten der Enolform. Entscheidend für die Gleichgewichtslage in Lösungen scheint aber das Solvatationsvermögen des Lösungsmittels für acide H-Atome zu sein; dies erklärt, daß in CDCl₃ praktisch nur die Ketoform vorliegt (bei Entfernen der Enolform aus dem Gleichgewicht durch Veräthern wird diese aber genügend rasch nachgeliefert),

¹ P. Margaretha, P. Schuster und O. E. Polansky, Mh. Chem. **99**, 601 (1968).

² K. Michel, H. Gerlach-Gerber, M. Matter und Ch. Vogel, Helv. chim. Acta 48, 1973 (1965).

³ H. Lischka (Inst. f. Theor. Chem. d. Univ. Wien), Privatmitteilung.

in $\mathrm{CD_3COCD_3}$ hingegen das Gleichgewicht fast vollständig auf die Seite der Enolform verschoben ist.

Die Kondensation von II mit Aldehyden am Wasserabscheider nach der Methode von Cope⁴ liefert gute Ausbeuten an den gewünschten Doppelbindungsprodukten IV, welche erwartungsgemäß als ein Gemisch geometrischer Isomere anfallen. Die Verbindungen IV wurden in 80proz. MeOH mit 0.5n-NaOH potentiometrisch titriert, und ihre pK'_L -Werte mit denen der analogen Verbindungen des Typs I verglichen. Es zeigte sich dabei, daß der Ersatz der CH₃N-Gruppe in I durch ein O-Atom die pK'_L -Werte um etwa eine Einheit erniedrigt. Diese Beobachtung würde die Annahme nahelegen, daß der Übergang von Typ I zu Typ IV mit einer Zunahme der Polarität der Doppelbindung verbunden sei. Wie aber die Berechnung der π -Elektronenstruktur des 4-Methylen-3,5-dioxoisoxazolidins (IVc, R=H) mittels der HMO-Methode³ zeigt, ist dies nicht der Fall: die positive Partialladung am β-C-Atom beträgt in IV c + 0,1849, in Ic (R=H) 5 + 0,1844, die negative Partialladung am α -C-Atom in IV c -0.0588, in 1c -0.0586 Elementarladungen. Die Polarität der C=C-Doppelbindung ist also in I und IV nahezu gleich. Die oben gemachte Beobachtung findet ihre Erklärung im Energieunterschied zwischen der Lewissäure IV und dem Lewissäure—Basen-Addukt V, welcher nach HMO-Rechnungen³ sich zu +1,4299 $|\beta|$ ergibt; für Methylenmeldrumsäure (VI) $^{5, 6}$ wurde er zu +1,4277 $|\beta|$, für Ic⁵ zu + 1,4327 |β| berechnet. Wie Tab. 1 zeigt, liegen die p K_L -Werte von IV zwischen denen von I und VI.

Durch den Basenangriff an IV a und IV b wird das Lewissäure—Basen-Addukt V gebildet, in welchem die Behinderung der Rotation um die C—C-

⁴ A. Cope, C. Hofmann, C. Wyckoff und E. Hardenbergh, J. Amer. Chem. Soc. 63, 3455 (1941).

⁵ P. Schuster und O. E. Polansky, Mh. Chem. 99, 1234 (1968).

⁶ P. Schuster, O. E. Polansky und F. Wessely, Tetrahedron 1966, Suppl. 8, part II, 463.

Tabelle 1

Verbindung	Ausb., %	Schmp.,	N ber. (%)	N gef. (%)	NMR ppm (rel. Intens.)	$\begin{array}{c} \mathrm{p}K_L \\ (80\%) \\ \mathrm{IV} \end{array}$	$\begin{array}{c} \mathrm{p}K_L'\text{-Werte} \\ (80\% \ MeOH) \\ \mathrm{IV} \\ \mathrm{IV} \end{array}$	H) VI6
П	85a	136	7,91	7,96	CDCl ₃ 7,47 (5) 3,60 (2)			
					CD ₃ COCD ₃ 7,47 (5) 3,88 (1) 2,88 (1)			
Ш	98	Ö1	7,32	7,10	$CDCI_{3} $		Annual (Adaptive Control of Contr	
$ m IV$ $ m R=C_6H_5$	70a	173	5,28	5,41	CDCl ₃ 7,18 — 7,93 (8) ° 8,13 + 8,22 (1) ^d 8,32 — 8,65 (2) °	7,0 7	7,95 6,0	
$R = p \cdot NO_2 - C_6H_4 -$	90 в	183	9,04	8,95	CDCl ₃ $8,23 + 8,45$ (1) d 7,33 8,73 (9) c	5,0	6,15 4,0	0
$\mathrm{R}\!=\!\mathrm{p}\!\cdot\!\mathrm{Cl}\!-\!\mathrm{C}_{6}\mathrm{H}_{4}$	93 a	168	4,70	4,92	CDCl ₃ 7,17 — 7,97 (7) $^{\circ}$ 8,03 + 8,10 (1) $^{\circ}$ 8,22 — 8,60 (2) $^{\circ}$	6,3 7	7,55 5,4	4
$R = p \cdot (CH_3)_2 N - C_6 H_4 - \cdots$	զ 96	228	9,03	9,07	zuwenig löslich	nicht	nicht titrierbar	-

 $^{\rm a}$ umkristallisiert aus Benzol/Petroläther $^{\rm b}$ umkristallisiert aus CHCl₃/Petroläther e aromatische Protonen

d olefinische Protonen

⁷ P. Margaretha, Dissertation Univ. Wien, in Vorbereitung.

Bindung aufgehoben ist. Die von uns gemessenen p K_L -Werte können sich daher nur auf ein entsprechendes Isomerengemisch IV bzw. V beziehen. Aus diesem Grunde, und da wir die Konstitution der Verbindungen IV durch die NMR-Spektren der Gemische und durch die Stickstoffbestimmung sicherstellen konnten, haben wir die auf Trennung von IVa und IVb verzichtet.

Die potentiometrische p $K_L^{'}$ -Bestimmung der Verbindungen IV muß relativ rasch ausgeführt werden, da ansonsten im alkalisch-wäßrigen Milieu die Öffnung des Ringes zu Fehlern führt.

Experimenteller Teil

Darstellung von III: 3 g II in 150 ml CHCl₃ wurden bei Zimmertemp. mit äther. CH₂N₂-Lösung versetzt. Nach Entfernung des Lösungsmittels im Vak. wurde das zurückbleibende Öl in CH₂Cl₂ gelöst, mit Aktivkohle behandelt und eingedampft. Das Produkt zersetzt sich beim Destillieren. Mit FeCl3 in methanol. Lösung tritt eine starke Braunfärbung auf.

Darstellung von IV: 0,005 Mol II, 0,007 Mol Aldehyd, 0,06 ml Piperidin und 0.18 ml Eisessig in 50 ml Benzol oder CHCl₃ wurden 20 Min. am Wasserabscheider erhitzt. Nach Entfernung des Lösungsmittel wurde umkristallisiert (Tab. 1).

Die Titrationen wurden mit einem Titrator TTT1 der Firma Radiometer durchgeführt, die NMR-Spektren auf einem Varian A-60-A aufgenommen.

Herrn H. Bieler danken wir für die Durchführung der Mikroanalysen.